Wind tunnel tests of model humpback flippers with and without leading-edge tubercles have demonstrated the fluid dynamic improvements tubercles make, such as a staggering 32% reduction in drag, 8% improvement in lift, and a 40% increase in angle of attack over smooth flippers before stalling. A company called WhalePower is applying these lessons to the design of wind turbines and fans of all sorts – industrial ceiling fans and other HVAC systems, computer fans, etc. – to improve their efficiency, safety, and cost-effectiveness.
"The humpback whale Megaptera novaeangliae is exceptional among the baleen whales in its ability to undertake acrobatic underwater maneuvers to catch prey. In order to execute these banking and turning maneuvers, humpback whales utilize extremely mobile flippers. The humpback whale flipper is unique because of the presence of large protuberances or tubercles located on the leading edge which gives this surface a scalloped appearance. We show, through wind tunnel measurements, that the addition of leading-edge tubercles to a scale model of an idealized humpback whale flipper delays the stall angle by approximately 40%, while increasing lift and decreasing drag." (Miklosovic et al. 2004:L39)
Comments
Post a Comment